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Abstract. lnthis paperwecontrast theclassical andquantumdynamicsafSU(1, I)coherent 
states by the use of a positive-definite quasiprobability distribution, a Q-function, defined 
over these states. For Hamiltonians that are linear in the SU(1, I )  generators. therefore 
coherence preserving, the quantum and classical Liouville equations are identical. This is 
illustrated for a degenerate parametric amplifier. For an anharmonic oscillator, the quantum 
Liouville equation contains additional terms containing second-order derivatives with 
non-positive-definite coefficients. These terms give rise to the quantum recurrences not 
seen in the classical evolution of this system. It is pointed out that the quantum equation 
far the Q-function goes over to the classical equation as the Bargmann index. k, becomes 
large, in agreement with previous semiclassical considerations. 

1. Introduction 

In recent years there has been much interest in the use of quasiprobability distributions 
in quantum mechanics and quantum optics [I] .  Of particular interest is the contrasting 
of the quantum and classical dynamics of nonlinear oscillators [2] and rotators [3] by 
the use of a quantum joint-phase space probability distribution known as the Q- 
function. The quantum Q-function, unlike the P-function or Wiper's distribution 
function which may take on negative values, is defined as a true, positive, probability 
distribution for the simultaneous (approximate) measurement of position and momen- 
tum variables. Milburn [2] has studied the quantum and classical Liouville dynamics 
of a solvable model of an anharmonic oscillator. In that study, the initial state of the 
system was taken as an ordinary harmonic oscillator coherent state, a state of minimum 
uncertainty and therefore a most classical quantum state. A classical description of 
the motion was obtained by solving the corresponding Liouville equation for the 
classical Q-function. It was shown that an initial Gaussian contour develops a phase 
space structure called a 'whorl' which becomes more convoluted on a finer scale as 
f + 00. This in  turn could be associated with the decay of the mean amplitude of the 
motion in phase space. On the other hand, the exact quantum Q.function does not 
exhibit the whorls of the classical case but rather shows recurrences without the shear. 
(However, the contours do  become distorted because squeezed states are generated 
by the interaction.) These quantum recurrences are attributed to the fact that the 
quantum Q-function satisfies a Liouville-like equation but with additional second-order 
derivatives with non-positive-definite coefficients. The model anharmonic oscillator 
produces self-squeezing of the light. 

0305-4470/91/153513+ 19303.50 @ 1991 IOP Publishing Ltd 3513 
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In more recent work, Sanders [31 has studied the classical and quantum dynamics 
of a nonlinear rotator, again with the use of a Q-function. However, in that case the 
relevant algebra was that of the SU(2) symmetry group for spin precession rather than 
the Heisenberg- Weyl group H4 of the anharmonic oscillator. The Q-function therefore 
was given as the expectation value of the density operator with respect to coherent 
states (css)  associated with SU(2). Similar results to those of the anharmonic oscillator 
are seen for the nonlinear rotator, namely shearing in the classical Q-function and 
recurrences in the quantum Q-function. 

In the present work we consider another kind of generalized coherent state driven 
by a nonlinear Hamiltonian. In particular we consider the coherent states of the 
dynamical group SU(1,I)  driven by a nonlinear oscillator similar to the one discussed 
in [I]. SU(1 , l )  is known to be a dynamical group for a number of systems of general 
interest in quantum mechanics [4]. css over SU(1,I) have been introduced by Perelemov 
[SI and have been applied to many of the systems discussed in [4] (see [6] and [7]). 
On the other hand it has been recognized that the SU(1, l )  css generated from a 
harmonic oscillator ground state are a representation of a particular kind of quantum 
state known as the squeezed vacuum [8]. Such a state has no classical analogue as its 
associated P-function in terms of the ordinary or Hn css takes on negative values [9]. 
It is possible, of course, to introduce a P-function quasiprobability distribution for 
the SU(1, 1) css, as has been done by Wodkiewicz et a1 [IO]. In the present paper we 
work with the SU(1, 1 )  cs Q-function which is always a positive quasiprobability 
distribution. In spite of the fact that SU(1, 1) css have distinctively non-classical 
properties, it is still possible to speak of the ‘classical’ evolution of such states. 
Hamiltonians that are linear in the generators of SU(1, I )  preserve the coherence of 
the SU(1, 1) csI under time evolution, which means that the quantum and ‘classical’ 
evolutions are essentially identical [ 1 I]. The classical motion in this case takes place 
in a phase space in the form of the Lobachevsky plane [6,7] but the corresponding 
Hamiltonian’s equation is nonlinear. It is of course always possible to consider a 
non-coherence-preserving SU(1, 1) Hamiltonian projected onto this space [12]. 
However, there is no guarantee that the ‘classical’ motion in such cases will mimic the 
true quantum motion [13]. 

In this paper we study and contrast the evolutions of quantum and classical 
Q-functions for an initial SU(1, 1) cs interacting with a model anharmonic oscillator 
of relevance to quantum optics. This model has previously been shown to give rise to 
self-squeezing of the quantizing electromagnetic field [I41 as well as higher-order 
squeezing [15,16]. The model Hamiltonian has also been used to describe an optical 
Kerr medium in one arm of a Mach-Zehnder interferometer [17]. It is related to the 
Hamiltonian used in [2]. Previously we have studied the interaction of the SU(1.1) 
css (or squeezed vacuum states) with such a medium and have shown that the squeezing 
eventually becomes revoked after a short time period [IS]. In a more recent study [I91 
we have compared the quantum and classical time evolution of the SU(I.1) Csr in 
anharmonic oscillators with the model to be investigated here as a special case. In that 
paper the types of motion were compared by calculating the overlap probability of 
the true quantum state with the ‘classical’ state which consisted of an undistorted 
SU( 1, 1 )  cs following the classical orbit. We found that, for low excitation of the states, 
the quantum and classical motions were essentially equivalent but that this was not 
the case for high excitation, somewhat counter-intuitive in regard to the correspondence 
principle. (This has recently been shown to be the case for the usual H4 css in the 
same anharmonic oscillator [20].) 
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This paper is organized as follows. In section 2 we review the essential formalism 
of SU(1, l )  css as will be required for this paper. We also introduce the so-called P- 
and Q-representatives of the SU(1, l )  generators which are required for certain statis- 
tical averages. In section 3 we introduce the SU(1, 1) Q-function and apply it to the 
case of a coherence-preserving interaction-namely the degenerate parametric 
amplifier. In this case the quantum and classical Q-functions are identical. In section 
4 we consider the anharmonic oscillator mentioned above and in section 5 we conclude 
with some brief remarks. Two appendices have been added to include some mathemati- 
cal results. The first relates the P- and @representatives of the SU( 1, 1 )  operators 
while in the second we derive the quantum Liouville equation for the Q-function for 
the anharmonic oscillator. 

2. SU(1,l) coherent states 

In this section we briefly review the SU(1, 1 )  cs formalism that is relevant to the present 
paper. For a more extensive review, see the cited literature. For a recent review of 
generalized coherent states see Feng and Gilmore [21] and Kuratsuji et a/ [22]. 

The SU( 1 , l )  Lie algebra contains the three operators satisfying the commutation 
relations 

[KO, K*j = i K ,  [ K - , K + j = i K o  Q.ij  
along with the Casimir operator 

C = K : - ~ ( K + K _ + K - K + ) .  (2.2) 
The above algebra may be realized in terms of the boson operators a and a+ satisfying 
[a ,n+]=1 as 

K,=a(ata+aa+)=f(ata+5)  
K ,  =+a+2 K _ = i a .  1 2  (2.3) 

We require only the positive discrete unitary irreducible representations W ( k )  where 
k denotes the Bargmann index such that the eigenvalues of C are k (  k - 1) and k > 0. 
The SU(1, l )  basis states of 9 + ( k )  are / m ,  k )  such that K,lm, k ) = ( m +  k) lm,  k )  where 

a. This effectively splits the usual number space into two spaces, one for k = a (even 
photon number) and one for k = i  (odd photon number). 

... m =n, !,2, : : : : For the realization of the aleehra in equations (2:3) one nhtains k =a,  

SU(1,l) css are defined as [5,6] 

I & k ) = S ( z ) l O , k )  (2.4) 

S(z)=exp(zK+-z*K-) (2.5) 
and z = -( B/2) e-'+, f = -tanh( 0/2) e-" where B and 6 have the ranges -m< B < 00 

and 0 s Q s 2?r. The geometry of the group manifold as parametrized by 0 and q5 
actually consist of two unconnected hyperboloids. (This has recently been illustrated 
in a paper by Aravind [23].) Since it is not possible to jump from one manifold to the 
other, we hcnccferth restrict the hypcrbo!ic ang!e B !o the range 0 s  O<m. n e s e  
coherent states may be expanded as 

where 

(2.6) 
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where we have dropped the k-label for convenience. These states are not orthogonal 
since the overlap of two states is given as 

(515')=(1 -1512)k(l -15'12)k(1 (2.7) 
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but they are normalized. Unity may be resolved according to 

I = 1 dd5)10(51 

where the measure is given as 

Strictly speaking, these formulae are valid only for k > f ;  however, we may always 
extend k to the region k s f as an analytic continuation of the hnal results. 

We introduce the S U ( 1 , I )  Q-function in the usual way [2] in terms of the density 
operator p ( r )  as 

Q ( 5 , f )  =Tr(p(f)I5)(51). 

Taking the trace over the SU(1,I)  53+(k)  basis we have 

(2.10) 

where we have used the completeness relation 

It follows from Tr(p) = 1 and equation (2.11) that 

J Q(5, f )  dA5)  = 1 (2.13) 

as must be the case for a true probability density. Now with 

p ( t )  = wt)p(O)U+(t)  (2.14) 

where U(1)  is the unitary evolution operator, and taking p ( 0 )  to be the pure state 
density operator p ( 0 )  = lgo)(&, we have 

Q(5, 1) = I(5i U(f)150)12. (2.15) 

We now introduce the so-called P- and Q-representatives of operators for the 
SU( 1, I )  css. For any operator A defined in the space 9 ' ( k )  it is always possible to write 

A = E ,  Im, k)A,,h', kl = d d 5 )  d~L(Z')l~)(5lA15')(5'I (2.16) 

where A, , , .= (m,  kjAjm', icj. Since the cs 15) are overcompieie it is aiways possibir io 
write the integral kernel of the above in the diagonal form [21] 

m,m J 

A = ddt)I t )Ap(5)(51 (2.17) 
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where A,([ )  is a function defined on the Lobachevsky plane O s l ( l <  1. The function 
A,(.$) is referred to as the P-representative of the operator A and is generally not 
unique. The Q-representative of the operator A is just the expectation value of A with 
respect to It), i.e. 

A,(() =(tIAIt). (2.18) 

The P-representative of the density operator is 

(2.19) 

while the Q-representative has already been given in equation (2.1 1) .  Statistical averages 
in the P-representation are calculated according to 

(2.20) 

while in the Q-representation we have 

(A)=Tr(p(f)A) = d p ( 0  Q(t,  t ) M t ) .  (2.21) 

Apparently we require the P-representatives of the SU(I, 1) operators in order to 
calculate their averages with the Q-function. A procedure for finding these functions 
is given in appendix 1. 

Finally, we close this section by making a few remarks on the classical motion of 
an  SU(1, 1 )  cs .  The classical equations of motion for the parameter 5 are [6,7] 

i={t, El 8* = {t*, 'w (2.22) 

where {,} is the Poisson bracket defined as 

{A, n )  = 2ik ( a t  a(* a t *  a t  (2.23a) 

(2.236) 

and where 
Wt5,5*, t ) = ( t I H ( K o , K + ,  1)15). (2.24) 

In the case of a Hamiltonian nonlinear in the K-operators we use the mean field 
approximation 

(2.25) 

We define a classical analogue Qc,((, 1 )  of the equation Q-function to be the function 

E(& t*, t )  E H ( ( K o ) ,  (JL), 1). 

that satisfies the Liouville equation 

a ~ ~ ,  -={% QJ (2.26) 

subject to some initial distribution Qc,(t, 0). On the other hand, the differential equation 
satisfied by the quantum Q-function is found by taking the SU( 1, 1) cs expectation 
value of quantum Liouville equation satisfied by the density operator 

af 

*= -i[H, p ]  
at  

(2.27) 
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As we shall illustrate in the next two sections, if H is linear in the SU( 1,1) generators 
the quantum and classical equations for the Q-function are identical and of first order. 
For a nonlinear Hamiltonian, the quantum equation will contain additional terms of 
second order with non-positive coefficients just as for the usual H4 css .  

C C Gerry and J Kiefer 

3. Degenerate parametric amplifier 

The degenerate parametric amplifier (DPA) has received much attention with regard 
to the fact that SU(1, 1) is its dynamical group [8, 11, 18,241. Such a system is expected 
to generate squeezed as well as antibunched photon states. Before discussing the model 
let us review the condition for which a state is squeezed. In what follows we work 
mainly in the interaction picture. 

We define the quadrature operators as 

1 
2i X, = $ ( a  + a + )  X, =- (a - a+) (3.1) 

such that 

1 
[XI, Xzl =j (3.2) 

from which it follows that 

( ( A X I ) ~ ) ( ( A X ~ ~ ) ~ ~ ~ ~  (3.3) 

Squeezing exists if either variance in equation (3.3) is less than i. Since for an SU(1, 1) 
state of definite k(=$ or $)(X,,)=O, then we have 

( ( A x 1 . 2 ) ~ )  = (Ko)*f(K++ K-) (3.4) 

where we have used the realization of equation (2.3). 
In the interaction picture, we take the Hamiltonian of the DPA as 

H,=iy(K_-  K+). (3.5) 

XI(& t*)=iy((K-)-(K-)) 

The expectation value of HI is 

where, from appendix 1, 

Thus from equations (2.23) and (2.26) we have 

To obtain the differential equation satisfied by the quantum Q-function, we take 
the expectation value of 

*= y [ ( K _ - K + ) ,  p ] .  
at 
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1 

E so.lm -0.5 -1 -1 -0.5 0 0.5 1 

- 

1 
-1 

-1 -0.5 0 0.5 

Re(<) 
Figure 2. Sequence showins the evolution of a Q-function, with & = O ,  driven by a 
degenerate parametric amplifier as given in equation (3.14). 

4. Anharmonic oscillator 

In terms of the annihilation and creation operators of a single-mode field, the Hamil- 
tonian of the anharmonic oscillator describing a nonlinear non-absorbing medium is 
[I41 

A 
H = o ( a + a + f ) + - a t 2 a 2 .  2 (4.1) 

In terms of the realization of the SU(1, 1) operators of equation (2.3) 

H = 2oKo+2AK+K_.  (4.2) 
Since the first term (the free Hamiltonian) commutes with the second then, in the 
interaction picture, the Hamiltonian is H ,  = 2AK+K-. As we have said above, this 
Hamiltonian has already been studied in regard to its effect on the evolution of an 
initial SU(1, 1) cs [18, 191. 
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First we consider the classical motion. The classical interaction Hamiltonian in the 
mean field approximation is 

The equation of motion for 0 and q5 are 

e = (0, X,} = 0 

4 =IC, XI] = 4Ak cosh 0. 

Thus 0 is a constant of the motion and 

d ( f )  = q5(0)+4Akf cosh 0 

and therefore 
(( t )  = ~(0) e-4i*Xt cosh O ( 0 i  

where 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Obviously 
circular with angular frequency Cl = 4Ak cosh O(0). 

is a constant of the motion. Thus the classical motion in the .$plane is 

From equation (2.6) the equation of motion for the classical Q-function is 

_- ~ +4iA k (-) 1+151' ( f *  JQci ag* - 6-) JQCi  

J t  1-151' Jt 
or in terms of 0, $ 

JQ 
J t  Jq5 
-- JQcl- 4Ak cosh 8- 

(4.9) 

(4.10) 

Since no derivatives with respect to 0 appear, 0 may be treated as a constant. Let 
7=4Ak cosh 0: we then have 

(4.11) 

If at I =0, Q,, has the form given by equation (3.101, then equation (4.11) implies that 

Therefore 

Qcl(c, ~ ) = ( 1 - l # ) 2 k ( 1  - l & 1 2 ) z k ( 1  -g*5ne*'A'k'"'h")-2k(1 - 5 , g  e-4i*r*corhe I-'* (4.12) 

where it should be noted that cosh O =  (1  + ~ # ) / ( 1 - 1 ~ 1 ' ) .  
In figure 3 we illustrate the time evolution of this distribution. It is apparent that 

the contours develop 'whorls' just as in the case of the ordinary css [2], becoming 
more convoluted on a finer scale as t -f m. 

We expect this behaviour to be reflected in the moments. However, it is not 
convenient to average over f ( t )  since, unlike the case of the usual css, c ( t )  is not an 
eigenvalue of an operator. However, the operator K- is analogous to the annihilation 
operator. Using the 'classical' SU(1, 1) cs  for the anharmonic oscillator 

the solution has the form of equation (3.10) but with 5 replaced by e-"f= e-4'"k'c"'h a E 
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1 

0.5 

c-\ * 
- 0  

'-0.5 

-1 -1 1. ,U! -0.5 0 0.5 1 

Re([) 

'i 
- E 

-0.5 

1 
-1 

-1 -0.5 0 0.5 

Re([) 

0.5 - * 
- 0  - E . 
-0.5 

-1 -0.5 0 0.5 1 

- * 0.05 :::i 
v 
E - -0.05 

-0.15 

-0.25-, - 
-0.9 -0.8 -0.7 -0.6 - .5 

Figure 3. Evolution of a single contour at 0.5 for the classical Q-function of the anharmonic 
oscillator of equation (4.12). The apparent jaggedness and breakup of the contour is merely 
an artifact of the grid sire. 
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), the @representative of K _  is from equation (A1.6), taking the ~[(o) e- l ihkl  sosh B 

complex conjugate 

w 52 0. 
E - 

-1 

- 2 -  

(4.13) 

0 .  

. 0 
OO ,-. 

" . O  0 

. ' . . 

The real and imaginary parts of this form a representation of phase space. The 
corresponding classical P-representative is 

and the statistical (ensemble) average is, from equation (2.2), 

(K-(t)),t= 4 4 5 )  K--P(S)~IQ~I(S ,  0. 

(4.14) 

(4.15) 

Unfortunately it has not been possible to obtain a closed-form expression for this 
quantity and therefore we cannot make the analytic continuation to k = a. Instead we 
break (K-(r))cl into its real and imaginary parts and write 

(4.16) Y dx dy 

where x = Re g, y =  Im 6, 
Q&, y, 1 )  = (1 -xo)2k(l -x2-y2)2h 

x 1-2x,xcos[4*tk( l+xZ+y2 2)] I I-x -y 
1+xZ+y2 -2h 

+2xoysin[4Atk( I-x'-y2 )] -xi(x2+yz)] (4.17) 
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when to = 0.5 and k = 2. The fact that the curve is not smooth is due to the nature of 
the Monte Carlo calculation. Nevertheless, we clearly see the motion ‘damping’ to 
zero as f + m. No true damping is taking place, the approach to zero being a statistical 
result. We extrapolate from this similar behaviour for k =;. 

Finally we turn to the quantum case. The equation of motion for the density 
operator is 

C C Gerry and J Kiefer 

(4.18) 

taking the expectation value of this equation, and using results from appendix 2, we 
obtain 

_-  d p - - i 2 A [ K + K . ,  p ]  
a i  

_-  aQ- -4iAk(-)( i+l6l2 [ * ~ - e ~ )  a Q  -2iA( (*2--(2-) a2Q J’Q (4.19) 
J i  i-1el2 a5 a t  a p 2  a t  

which contains second-order derivatives with non-positive definite coefficients. Note 
that if k is large we may drop the second-order terms and recover equation (4.9). This 
is another illustration that the large k limit is the classical limit for SU(1, 1) csr [25]. 

The solution to equation (4.19) is actually easier to obtain using the definition of 
equation (2.15) with 

u,(~) = e-2i*~K+K. (4.20) 

Using the fact that 

K + K _ ( m ,  k) = [ m (  m + 2 k  - 1)]1 m, k)  

we have 

(4.21) 

This solution can also be obtained by using a procedure similar to that used in [2]. 
We note in passing that it  has previously been shown [26] that an initial squeezed 

vacuum state 15, i) interacting with an anharmonic oscillator with interaction Hamil- 
tonian of the form (a’a)’ evolves into a superposition of vacuum states IC,:) and 
1-5, a). This superposition does not arise in the present case. 

Let us now consider some quantum mechanical moments. One can use either 
equation (2.21) or, simply, 

( A )  = Tr( PA). (4.23) 

For the operator K- we obtain 

(4.24) 

The behaviour of this function is illustrated in figure 5 .  While for short time and large 
lgol the quantum and classical motions agree, the quantum mechanical motion shows 
a complete recurrence, aside from a phase, at time i = 2 ~ 1 4 ~ .  The average of KO yields 

(4.25) 

which is to be expected since KO is a constant of the motion. We note, however, from 
equations (3.4), (4.24) and (4.25), that we recover the previously calculated variances 
of the field quadratives for the case when k = a  (see figure 6). 
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3 

v 

- E 
-1  

Figure 5. Plot of imaginary against real pans of zlm Re(K..) ( K . ( r ) )  from equation (4.24) with &,=OS and k = f .  

-3 -1 1 3 
-3 

- 
O 0  1.57 3.14 4.71 Figure 6. Variance against A I  o f  the X, quadrature 

A t  of [he field for to = -0.9. 

Finally, we consider the dynamics of the quantum Q-function itself. This is illus- 
trated in figure 7. It is apparent that the evolution of this function is quite different 
than for the classical case. We notice that the contours do distort somewhat but also 
their ‘centres’ seem to rotate about the origin. This behaviour may be contrasted with 
the behaviour of the time evolution of the variances in figure 6. 

5. Conclusions 

In this paper we have compared the classical and quantum evolutions of S U ( 1 , l )  csr 
by the use of a Q-function probability distribution that is always positive. Even though 
the SU(1, 1) css contain an inherent quantum property (i.e. squeezing) it is nevertheless 
possible to obtain a classical picture of these states in terms of their motion on the 
Lobachevsky plane. For coherence-preserving Hamiltonians, the quantum and classical 
Liouville equations agree as expected and contain first-order derivatives of Q. (It 
should be noted that for the DPA with ordinary coherent states, the quantum Liouville 
equation would contain second- as well as first-order derivatives, an indication that 
such Hamiltonians do  not preserve the coherence of those states.) For the anharmonic 
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I 
1 -1 ' 

-1 -0.5 0 0.5 
R 4 - 9  

Figure 7. Sequence of contour plats showing the 
evolution of the quantum Q-functions of equation 
(4.21). The contours are at 0.5. 
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oscillator the classical and quantum Liouville equations do differ by the presence of 
the second-order derivatives in the latter. It is these non-positive-definite diffusion 
terms that give rise to the observed quantum recurrences, just as in the case of the 
oscillator CSS. The classical limit for the SU(1, 1 )  css is quite clearly shown to be the 
limit when k becomes large. In previous work, using a different method [19], we 
showed that the quantum and classical evolution of the SU(1, 1 )  css in the anharmonic 
oscillator agreed well for fixed k and low excitation, but that for high excitation the 
two evolutions are not equivalent, again for the same k. This result is not in disagreement 
with the results of this paper since our classical results are large-k results arising from 
neglecting the second-order derivatives in equation (4.19). Elsewhere [ Z S ]  we have 
shown that the large-k approximation gives rise to a Bohr-Sommerfeld quantization 
rule which yields respectable results for the energy eigenvalues of even-powered 
anharmonic oscillators. In this sense then, the 'classical' results of the present paper 
might be interpreted as semi-classical. 

One immediate use of the SU(1, l )  cs Q-function is in the comparison of the 
classical and quantum behaviours of a system whose classical counterpart is chaotic 
[27,28], where the initial state is an SU( 1, 1) cs. Such a study is currently in progress 
and will be reported elsewhere. 

Appendix i 

In this appendix we derive a relationship between the P- and @representatives of 
operators for SU(1 , l )  csn. 

For a n y  operator A defined in the space of B+(k) the Q-representative is defined 
as the expectation value with respect to the coherent state 

Ad5)=(5IAlf). (Al . l )  

If A is an exponential operator of the form 

A = ~ ' ? * K +  ei?oKoe?-K- (A1.2) 

then by using the non-unitary 2 x 2 representation of SU( 1 , l )  we obtain [22] 

(51.&15) = (1 - 1(12)2k( 

Y+Y- e 

h i i t -  A ii[* - A i  il[l*!-*k !.A!.?) 
where 

-ir, A,, = y+ A , ,  =eiYo12- 
(A1.4) 

Then the Q-representatives may be found for any operator functions of K , ,  K -  and 
KO from iaiting ihe appropriate derivaiives or' equation (Ai.3).  For exampie, the 
Q-representatives of KO and K ,  are just 

= -y- e-i%/2 A,, = &vo/2 ,  

. .  
?.=a 

(A1.S) 

(A1.6) 

1.=0 

and, of course, ( K _ ) =  (K+)* .  
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The P-representative of operator A is 

(A1.7) 

A,([') =(5'1AlO= I d d 5 )  A~(5)1(~'15)1'. (A1.8) 

However, to find a more direct relation between A, and A P  let us take the matrix 
element of A with respect to the basis of W ( k )  to obtain from equation (A1.7) [29] 

A,,,, =(m'klAlm, k )  = d d 5 )  AP(E)(m'k15)(51m, k )  (A1.9) I 
where frcm equaticn (2.7) and thzt t =  -!2nh!0/2) e?+ 

( m , k l t ) = (  r ( m + 2 k )  m!r(2k))  e '"'m(-l) '"(s inh~)m(cosh~) 0 - 2 k - m  . (A1.lO) 

Let us assume a general form for A,,(.$), 

Then with the transformation to the variables 8, d, 

1 ,  0 0 
d2c --slnh-cosh-dB d+ 

( I  - 1 5 1 y 2  2 2 
.... L 
wc nave 

( A l . l l )  

(Al.12) 

2 k -  1 (-l)"*m' r( m +2k)r (  m ' t 2 k )  ( m!m'!r2(2k)  
A,,,, =- 

257 

x Io2= d$ lom d 8  anpu ei("-"+"')+ ( sinh ;)"+"'+"+' 

BPq ( cosh ; ) - 4 k - n - n ' + r + l  

(A1.13) 

The integration over the $-variable contributes the factors S,+, . To calculate the 0 
integrals make the change of variable U = 012 and use 

which is valid for Re( v - p )  z 0. Thus we obtain 

r(m+2k)T(m'+2k)  
r ( m +  i ) r (m'+  1) A,,,,, = (-l)"'+"[r(2k - 1)]-'(  

(A1.14) 

(A1.15) 

Thus, knowing the matrix elements A,.,,, we may choose the coefficients (InPq to make 
equation (Al.15) an equality. 
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For example, for the operator K,, the matrix elements are (K,),,., = 
[ ( m + l ) ( m  +2k)]l'2Sm.,m+,. This implies that the only non-zero coefficient in equation 
(A1.15) is 4110 such that a, , ,=-2(k- 1). The P-representative of K, is therefore 

K+p(B,q5)=-2(k-l)e-imsinh =- (k - l ) e - " s inhB (A1.16) 

o r  in terms of 5 

(Al.  17) 

For the operator K O ,  the matrix elements are = (m + k ) S , . , , , ,  which implies 
that only aoo2 and a02, are non-zero such that aoo2 = an2,, = k-  1. Thus the P-representa- 
tive of KO is 

KnP(O,+)=(k - l )  sinh2 - +cosh2 - = ( k - 1 ) c o s h B  (A1.18) [ (2") (31 
or  

(A1.19) 

Appendix 2 

In this appendix we derive the differential equation satisfied by the quantum @function 
in the case of the anharmonic oscillator. Taking the expectation value of equation 
(4.18) we apparently must evaluate (tIpK+K&) and (.$/K+K-pIf) where Q(5, t ) =  
(51p(t)15). It is sufficient to evaluate only the former. 

We start with the following identity: 

K _  = 25K,- .$2K++efK+K_ e-6K+. (A2.1) 

Since 

e-fK* efK*IO, k )  = IO, k )  (A2.2) 

and K-10, k)=O then 

K-15) = (25K0-5~K+)ll). (A2.3) 

Thus 

(SIpK+K-It) = ~ ~ ( ~ I P K + K O I ~ ) - ~ ~ ( ~ I P K : I ~ ) .  (A2.4) 

Using the identity 

KO = ( K +  + eSK*K, e-FK+ (A2.5) 

(A2.6) 

(A2.7) 



or 

In a like manner we obtain 

Thus we have 

(A2.8) 

(A2.9) 

,..,.a\ 
\ A L . L V J  

(A2.11) 

(A2.12) 

(A2.14) 

Since K + K p  = ( p K + K _ ) +  the (<(K+K_p15) is just the complex conjugate of equation 
(A2.14). 

In the use of the degenerate parametric amplifier we need (5)K-p15), which is the 
complex conjugate of equation (A2.12). We also need (51pK-15) and ( [ l K + p l ( ) .  Using 
the identity of equation (AZ.1) we have 

(A2.15) (5lpK-15) = 25(5/~KaI5)  - 52(51K+If). 
But since Ko15)= . fK+(( )+  k(5) then 

(llpK-I5)= 5z(51~K+II)+2MQ (AZ.16) 

where ( [ ( P K , ) ~ )  is given by equation (A2.12). 
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